More Astronomy than You Can Shake a Stick At

A Sip from the Fire Hose of Astro Information

Every year in early January is “astronomy assimilation” time for me, a time when I can go and soak up all the latest in professional astronomy research. Yes, it’s the annual winter meeting of the American Astronomical Society.  Today’s the first full day of the conference and we hit the ground running.  I’ll be posting sporadic notes from the meeting over the next few days, including some highlighted astronomy discoveries that could make the news in between the coverage of the bad snowstorms and the very sad events in Tucson.

Part of Dr. Porco's talk focused on the dynamic causes of events called "propellers" in the Saturning rings. An unusually large propeller feature is detected just beyond the Encke Gap in this Cassini image of Saturn's outer A ring taken a couple days after the planet's August 2009 equinox.

Today’s meeting began with a short presentation about the future of space observational astronomy particularly as it will be seen through the James Webb Space Telescope. Following that was a wonderful talk sponsored by the Kavli Institute about Saturn’s rings and the observations made by the Cassini spacecraft that are enabling speaker Carolyn Porco and her team members to understand the dynamics of this evolving system.

The first press conference of the meeting featured the discovery of a new rocky world called Kepler-10b. It’s circling a star that lies about 600 light-years away and has been studied steadily by the Kepler planet-finding mission for more than eight months.  This is the first rocky world discovered by Kepler and it’s a fascinating one: it is about 1.4 times the size of Earth and orbits closer to its star than Mercury does to the Sun.

Kepler-10b is a scorched world, orbiting at a distance that’s more than 20 times closer to its star than Mercury is to our own Sun. The daytime temperature’s expected to be more than 2,500 degrees Fahrenheit, hotter than lava flows here on Earth. Intense radiation from the star has kept the planet from holding onto an atmosphere. Flecks of silicates and iron may be boiled off a molten surface and swept away by the stellar radiation, much like a comet’s tail when its orbit brings it close to the Sun.

There are several constants about these meetings — especially in these exciting days of spacecraft missions like Cassini, HST, and Kepler — and that is that we’ll always be hearing about new planets around other stars, we’ll keep learning new things about familiar objects like Saturn and its rings, and Hubble Space Telescope (and its sister orbiting observatories) will keep bringing us gorgeous images of the cosmos.
Each day of this meeting is chock full of papers and results to hear about. My own path through the meeting (at least today) is guided by radio astronomy results, and so I spent some time listening to presentations about early science from the Murchison Widefield Array in Australia and the search for the epoch of reionization at low frequencies.  It’s always amazing to me the new and inventive ways that astronomers can explore the universe and find out things we didn’t know before. The more of these meetings attend, the more I realize that even though we know a LOT – there’s so much more that we will be learning in the days and years and centuries ahead.