Category Archives: hypernova

Attention, Luminous Blue Variable Fans!

More Outburst Data from Eta Carinae

There’s an unstable star out there that’s on the brink of destruction. It lies some 7,500 light-years away, embedded in a star-forming region called the Carina Nebula. The star itself is called Eta Carinae (Eta Car, for short), and it’s actually a double star system. Some 170 years ago, observers noticed that it was growing very bright. Over time, it became the second-brightest star in the sky.

This unexpected brightening came to be known as the “Great Eruption”, and astronomers of the time watched it with great interest — but didn’t have much in the way of sophisticated instrumentation to really dig into the object to tell what was going on there.  Today, modern telescopes are showing us what really happened during the Great Eruption.

The story goes like this:  the more massive member of the duo — a type of star called a luminous blue variable — began blasting out huge amounts of its own mass. Over the period of 20 years that it was seen to be erupting (from 1837 to 1858), this heaving star lost more than 20 solar masses of material.  Much of that “star stuff” can still be seen in a double-lobed cloud surrounding the system.

These images reveal light from a massive stellar outburst in the Carina Nebula reflecting off dust clouds surrounding a behemoth double-star system. The color image at left shows the Carina Nebula, a star-forming region located 7,500 light-years from Earth. The massive double-star system Eta Carinae resides near the top of the image. The star system, about 120 times more massive than the Sun, produced a spectacular outburst that was seen on Earth from 1837 to 1858. But some of the light from the eruption took an indirect path and is just now reaching our planet. The light bounced off dust clouds (the boxed region at the bottom of the image, indicating an area of space that lies about 100 light-years away ) and was rerouted to Earth, a phenomenon called a light echo. The image was taken in February 2000 by the U.S. National Optical Astronomy Observatory's Curtis Schmidt Telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The three black-and-white images at right show light from the eruption illuminating dust clouds near the doomed star system as it moves through them. The effect is like shining a flashlight on different regions of a vast cavern. The images were taken over an eight-year span by the U.S. National Optical Astronomy Observatory's Blanco 4-meter telescope at the CTIO. Credit: NASA, NOAO, and A. Rest (Space Telescope Science Institute, Baltimore, Md.)

Eta Car (the LBV) is a massive dying star.  Such stars do not make up the majority of stellar systems in our galaxy, so of course, astronomers are quite interested in what sort of death process Eta Car will go through. Unlike our Sun, which will sort of gently swell to become a red giant (and lose much of its mass in a less-explosive manner), Eta Car will likely go out in a huge cataclysm called a supernova.  Some astronomers suggest it could be such a catastrophic event it would be termed a “hypernova.”

However it blows, Eta Car’s passing will afford astronomers with a ringside seat to stellar mass destruction. The first thing they’ll detect when it blows is a gamma-ray burst that could affect our communications satellites.  After that, they’ll be busy cataloguing the process of the explosion and the ring of debris that will be rushing out to space.  Some astronomers have suggested that this explosion could happen anytime from the next few years to a few million years from now.  Regardless of when it blows, it’s not likely to hurt us much on Earth, since the rotational axis of the system is pointed away from us.

Hubble Space Telescope has been observing Eta Car for a couple of decades now, watching subtle changes in the cloud surrounding the stellar pair, and analyzing the mixes of gas and dust in that cloud. The most recent observations actually pinpoint an echo of the light from the Great Eruption bouncing off more distant parts of the clouds.   The observations of the light echoes mark the first time astronomers have used spectroscopy to analyze a light echo from a star undergoing powerful recurring eruptions, though they have measured this unique phenomenon around exploding stars called supernovae. In spectroscopy, light from an object is captured by the telescope and sent to an instrument (called a spectrograph) that breaks that light into all its wavelengths. Each wavelength of light tells you something about the chemical makeup of the object, its speed through space, whether or not it is spinning, and gives a measure of its temperature.  For the Hubble observations, the spectrograph  captured Eta Car’s characteristic “fingerprints,” providing details about its behavior, including the temperature and speed of the ejected material.

The light echoes from Eta Car are telling astronomers that this restless, heaving old star system does not behave like other stars of its class.  The temperature of the outflow from Eta Carinae’s central region, for example, is about 8,500 degrees Fahrenheit (5,000 Kelvin), which is much cooler than that of other erupting stars. So,this gives some important clues about what’s happening inside the star.  There are other clues in the stream of light HST is studying, and light from the outburst is still on its way to Earth. Astronomers are expecting another brightening in about six months and that will give them more data to chew on as they seek to understand how this star is going through its death process. So, stay tuned.  There’s more news on the way from Eta Car!

A Hypernova Sponsor

We go to a number of planetarium conferences every year, and like most folks who work in the planetarium business selling things to other colleagues, we get hit up for “donations” to help support the costs of conferences. Frequently we’re given a choice of ways to donate money, and they’re given cute names like “Nova” sponsors or “supernova” sponsors. Recently we’ve been seeing the term “Hypernova” for a sponsor who gives some huge amount of money (like around $5,000 or $10,000). I guess these are perceived as hierarchies, much as silver, gold, and platinum are used commonly to describe credit cards with higher and higher amounts.

It’s not quite the same kind of hierarchy as stellar explosions though. While a nova might be perceived as the “weakest” of the mighty outbursts that flow from stars, and a supernova is a strong one, with a hypernova being a really strong one, these terms really refer to distinctly different types of stellar explosions.

According to the National Radio Astronomy Observatory online dictionary of astronomy terms, a nova is a star that abruptly increases in brightness by a factor of a million. A nova is caused in a binary star system where hydrogen-rich material is transferred to the surface of a white dwarf until sufficient material and temperatures exist to kindle explosive nuclear fusion.

Skip down to supernova, and you get this: an extremely violent explosion of a star many times more massive than our Sun. During this explosion, the star may become as bright as all the other stars in a galaxy combined, and in which a great deal of matter is thrown off into space at high velocity and high energy. The remnant of these massive stars collapse into either a neutron star or a black hole.

There isn’t a definition for hypernova yet, because astronomers are still trying to figure out the precise conditions that would lead us to call a super-supernova explosion a “hypernova.”

Which brings me to a very cool announcement this week from a consortium of researchers in Europe, the U.S. and Japan, linking hypernovas to gamma-ray bursts. Here’s the scoop, as told by the National Observatory of Japan’s Subaru Telescope:

    An international research team, led by astronomers from the University of Tokyo, Hiroshima University, and the National Astronomical Observatory of Japan, used the Subaru telescope to obtain the spectrum of SN2003jd, a hypernova unaccompanied by a gamma-ray burst, and found the first evidence that it is a jet-like explosion viewed off-axis. Hypernovae are hyper-energetic Supernovae that are often associated with gamma-ray bursts. This result provides clear and firm evidence that all Hypernovae may be associated with gamma-ray bursts, but that gamma-ray bursts are observable only when jets produced by the hypernova explosion point towards Earth.

There’s more information at their web site, explaining the rationale behind the research.

All that being said, I find it amusing that a donor giving massive amounts of money is named after a stellar phenomenon that is so energetic, but yet is also can be so destructive and mysterious.