Ninth Planet!!! Well….possibly….

Computer Models Predict a Massive World beyond Neptune

Planet "Nine"

This artistic rendering shows the distant view from Planet Nine back towards the sun. The planet could be be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side.
Credit: Caltech/R. Hurt (IPAC)

The big news today involves a new world in the outer region of the solar system called the Kuiper Belt. Although it hasn’t actually been seen yet, planetary scientists at California Institute of Technology (CalTech) announced that they’ve found evidence for what may be a giant planet on a weird orbit out in the far reaches of our own solar system. Let that sink in for a moment.

If it turns out this object really exists, then it would be a candidate for planet-hood. Not only that, but it would help fill in a gap in early solar system history. It’s quite possible that this world formed as one of five planetary “cores”. Four of them ended up as Jupiter, Saturn, Uranus, and Neptune. “Core 5” could have gotten too close to one of the other gas giants early in the solar system’s history, and gotten gravitationally kicked out to its present orbit in the far reaches of the Kuiper Belt. This is all very exciting news, even if this world hasn’t quite been seen through telescopes yet.

The Skinny on “Planet Nine”

Here’s what happened. Two planetary scientists at CalTech — Konstatin Batygin and Mike Brown (who has discovered several worlds in the Kuiper Belt and is famous for claiming to have “killed” Pluto) — deduced the existence of this world by using mathematical models and computer simulations based on observational data of other worlds in the Kuiper Belt. It’s so massive they’ve nicknamed it “Fatty” (although the official “unofficial” name in their paper is “Planet Nine”). It could be the remnant of a “super-Earth” that formed early in the solar system’s history. The object has a mass about 10 times that of Earth. It orbits about 20 times farther from the Sun on average than Neptune does, andwould take between 10,000 and 20,000 years to go once around the Sun.

Finding Fatty

p9_kbo_orbits_labeled_1_

The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Batygin and Brown show that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Caltech/R.Hurt (IPAC). Diagram created using Worldwide Telescope.

The road to Fatty’s discovery began when Brown noticed a peculiar effect that showed up in the orbits of 13 Kuiper Belt objects. At first, he and others who had seen this effect suspected that there was another smaller object orbiting farther out that was putting the kink in the orbits of other worlds. So, Brown and Batygin began working on computer simulations of what could be causing the effect.

To give you an idea of what’s happening, think about the orbits of the known planets. All of them move more or less in the plane of the solar system. Pluto does not — it’s on a highly elliptical and eccentric orbit (meaning it’s orbiting through the plane, not quite perpendicular). That indicates it may have been “kicked out” of its original formation region by the combined action of Jupiter or Neptune, early in solar system history.

Things get weird when you get out to the Kuiper Belt, the region where Pluto, Eris, Makemake, and other dwarf planets orbit. Six very distant KBO worlds observed by astronomers Chad Trujillo and Scott Shepherd all have elliptical orbits, which most planets do. However, those orbits “point” in the same direction, as if they all lined up together. They’re also tilted in the same direction and point about 30 degrees downward from the plane of the solar system. They’re perpendicular to the plane. The chances of both orbital “quirks” are pretty small and point to the idea that something farther out is shaping those orbits.

The concept of distant objects messing with the orbits of closer-in worlds isn’t a new one. Before Pluto was discovered, the idea of a “Planet X” sent astronomers looking for something beyond Neptune, and Clyde Tombaugh found Pluto through this search. The idea of predicting a planet’s existence with mathematics isn’t new either. Neptune was also predicted mathematically in 1846 by Urbain Le Verrier. It turned out Neptune was observed earlier, but no one realized it was a planet. In the case of this new world, if it exists, it seems to be having a gravitational impact on the six worlds closer in. So, Brown, Batygin and others are following in some hallowed and very scientific footsteps with their mathematics and computer models.

The next step was to figure out what was doing the influencing. One idea was that several distant Kuiper Belt objects (as yet unseen or undiscovered) could have enough mass and gravitational pull to mess with the orbits of the “distant six”. That idea didn’t work out because it would require quite a bit more mass in the Kuiper Belt than actually exist. About 100 times more, to be exact. So, the two scientists decidd to try doing computer simulations of the orbits using a giant world as the perturber. It worked, and they came pretty close to mimicking the weird orbits.

If this world exists, it not only explains the weirdness of the six orbits it influences, but also may be the reason why Sedna and 2012 VP (another Sedna-like world) have orbits that are a bit extraordinary as well. These and others do NOT follow orbits that would be expected of Kuiper Belt objects that were “kicked out” by gravitational interactions with Neptune early in the solar system’s history. Instead, some are quite perpendicular to the plane of the solar system, and that is likely to happen if they’re being influenced by a large, distant world.

The story is still unfolding, folks. As I’ve said several times here, this world hasn’t been observed, yet. Until it’s actually seen, we can’t even be sure it’s a planet. By IAU standards it must be self-rounded by its own gravity, orbit the Sun AND have cleared its orbit of debris. We kow it orbits the Sun. The other two aspects need to be proven.

But, its effects on the orbits of other worlds has certainly indicated something is “out there”. And that’s enough to start people looking along the path of the supposed orbit of this world to see if what’s really there. So, stay tuned! Our perception and understanding of the solar system are about to change again!

Caveat WhackJob

Now, before all the N*ancy-bots and Nibiru-huggers start spamming me with cosmic reassurances that they’ve already seen this thing coming and it’s populated with aliens with wiggly tongues or something, I want to point out again: this world has NOT been observed, yet. So, you can’t claim to have spotted it either. NO ONE has seen this world. But, trained astronomers have seen its gravitational effects on the orbits of other worlds, and eventually it will be observed. This is completely, scientifically normal and nothing to start writing conspiracy theories about.

A Supernova Named Crusher

What a Brilliant Flash in a Distant Galaxy Can Tell Us

Every once in a while I see a posting by an astronomer who has discovered something unique. The latest one is from Dr. Melissa Graham (@mlg3k) at the University of California-Berkeley. She was working with some colleagues on a project called the Hubble Frontier supernova survey and spotted the telltale “light-up” of a Type Ia supernova in a view of a galaxy cluster some 6 billion light-years away.

For her work, not only does Melissa get a great discovery, but she gets to name the supernova. The usual practice for the Hubble Frontier Field survey is to use Star Trek names. So, she called her object SN Crusher, which is pretty darned cool. (Its official title is HFF15Cru.) And, lots of folks are taking notice, including actor Wil Wheaton (@WilW), who played Wesley Crusher. He caught the news, and congratulated Dr. Graham on her finding! He also let his “Trek” mom (Gates McFadden, who played Dr. Beverly Crusher) know, as well. It all played out on Twitter, where I happened to catch Dr. Graham’s first announcement.

What’s a Type Ia Supernova?

A binary system about to create a Type Ia supernova.

Artist’s concept of a binary system, with material from one star accreting onto a white dwarf.

There are two types of supernovae: Type I and Type II. The second kind, a Type II supernova, is a catastrophic explosion of massive supergiant star.  They’re cool, but that’s not what Dr. Graham saw. She spotted a Type Ia supernova. These events have interesting implications, particularly for understanding distances in the universe.

Usually Type Ia supernovae occur where two stars orbit as a close binary pair. One of them is likely a white dwarf. As they dance around each other, material from one star escapes and “accretes” (gathers) onto the surface of the other. Eventually, the second star reaches a limit to how much material it can accept, and it explodes, providing an extremely bright flash of light and other radiation. The exact mechanism for this explosion is still being modeled by astronomers.

These explosions eject material out to space, and are so bright they can outshine their home galaxy for a short period of time. Type Ia supernovae emit a pretty standard brightness level and astronomers have used them as so-called “standard candles” to measure distances in space. In 1998, astronomers observing Type Ia supernovae found an interesting result as part of their observations: the expansion of the universe appears to be accelerating.

The Frontier Fields Survey

To see how the expansion of the universe is changing over time, astronomers want to look at Type Ia supernovae throughout the cosmos. To do this, they gather light from objects that exist across great distances in space. That’s where the Hubble Frontier Fields Survey comes in.

Frontier Fields observers study massive clusters of galaxies using the the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. As a result, astronomers can see some of the most distant galaxies as they looked back in the infancy of the universe. And, they’re also finding — as Dr. Graham did — the signals from ancient Type Ia explosions. Those events give them even more information about the expansion rate of the universe at the time those events occurred.

Want to see more info about this supernova? Check out Dr. Graham’s discovery telegram here.