Category Archives: astronomy research

How Time Flies

Hubble Space Telescope’s 22nd Anniversary and Me

This past week marked the 22nd anniversary of the launch of the Hubble Space Telescope.  It really is hard to believe all that time has passed, but the solid record of science achievements from this famous orbiting telescope is proof that even if you start out with a problematic telescope, you can still do good science. Of course, making Hubble DO that good science took squads of astronauts, ground-based technicians and scientists years of problem-solving to do.  But, they did it.

I was not quite in graduate school when Hubble went up on April 24, 1990. I’d been part of a science team at the University of Colorado for just over a year and a half, led by Dr. John C. Brandt, who was (at that time, among his many responsibilities) the co-Principal Investigator for the Goddard High-Resolution Spectrograph instrument onboard HST.  I was working on a project analyzing Comet Halley images; specifically, I was doing astrometry on images of the comet’s tail so that we could analyze how the tail was being affected by the solar wind as the comet rounded the Sun during its last close approach in 1985 and 1986.

Not long after launch, Jack came back from Goddard Space Flight Center and warned us that there could be some problems with the telescope.  I think that only a few people knew how bad the problems were, mostly because they were still analyzing the images and calibrating the telescope. But, in June 1990, the full news broke and people were devastated by the idea that HST was flawed. I know we at the university were.

But, even as early as August of that year, we were seeing images that didn’t look awful, and I knew from talking with Jack that there was good science to be had — even if it took a bit longer to analyze the images. Our instrument, however, was pretty badly affected, as was the Faint Object Spectrograph.  I started to make notes about the problems with the telescope, and paying attention to the images it was producing. I think I had some idea that I’d write a book about the project someday and I knew it would be good practice to keep notes from the early days. In the meantime, I plugged away on the Comet Halley project, which eventually got published in 1992 as the International Halley Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, with mucho work done by me in a small-credit role).

This Hubble image of the Egg Nebula shows one of the best views to date of this brief but dramatic phase in a star’s life. This is the site of a star in its death throes. At the center of this image, and hidden in a thick cloud of dust, is the nebula’s central star. While we can’t see the star directly, four searchlight beams of light coming from it shine out through the nebula. It is thought that ring-shaped holes in the thick cocoon of dust, carved by jets coming from the star, let the beams of light emerge through the otherwise opaque cloud. The precise mechanism by which stellar jets produce these holes is not known for certain, but one possible explanation is that a binary star system, rather than a single star, exists at the center of the nebula. The onion-like layered structure of the more diffuse cloud surrounding the central cocoon is caused by periodic bursts of material being ejected from the dying star. The bursts typically occur every few hundred years.Courtesy NASA/STScI.

Well, after that one thing led to another—I studied MORE comets as part of the Ulysses Comet Watch, and  I entered graduate school and joined Jack’s GHRS team (albeit as a very junior member).  The science flowing from HST was getting better and better, and the first servicing mission proved that the telescope could be brought “up to spec”.  So, I decided to shop around the book idea, and took Jack on as a co-author.  After a false start or two, we ended up signing a contract with Cambridge University Press, and in 1995, we published Hubble Vision, which was updated a few years later. I also did a planetarium show by the same name, which has been a mainstay of my company’s repertoire ever since (read more about that show here).

I feel like I kind of grew up with Hubble, or maybe we grew up together. I feel privileged to have worked on an instrument team for HST, and to have written about it as extensively has I have.  The telescope has for me–and I hope for all people who follow astronomy exploration–expanded the horizons of cosmic understanding. And that’s a great tribute to its 22 years (and counting) legacy!

If you haven’t taken time to browse the images at Hubblesite.org, take some time to do so. The very act of exploring those pages is a voyage of exploration of the universe.

Check it out!

 

 

Staring into the Eye of Star Death

Visiting the Helix

One of the often-asked questions astronomers get is “What will happen when the Sun dies?”  It’s an obvious concern, since whatever happens to the Sun will affect Earth, but it’s not an immediate concern.  The death of the Sun isn’t going to happen for another few billion years yet, so we don’t have to worry about facing it grow larger during its red giant stage and then shrink down to become a tiny ghost of its former brilliance.  Many, many generations of humans will live and die on our planet before future astronomers will start to detect the first instabilities that indicate the Sun’s upcoming demise.

There are stars like the Sun out there in space that have already gone through the death process, and so astronomers study them to understand what our star will look like when it finally gets down to the serious business of stardeath. One of the objects they have studied quite a bit is called the Helix Nebula.

ESO’s VISTA telescope, at the Paranal Observatory in Chile, has captured a striking new image of the Helix Nebula. This picture, taken in infrared light, reveals strands of cold nebular gas that are invisible in images taken in visible light, as well as bringing to light a rich background of stars and galaxies.

The Helix was created as a Sun-like star reached the final stages of its life.  It began to lose its outer layers of gas, which you can see in the image above as they expand into space.  What’s left of the star appears as a tiny blue dot at the center of shell of material surrounding it. That ring spreads out over an area about four light-years across (almost the distance between the Sun and the nearest star in the Alpha Centauri system.  This infrared view shows the extent of the gas cloud.

The nebula is made up of of dust, ionized material and molecular gas. it’s all being heated up by ultraviolet light streaming out from the central star (which is very hot).  Notice the details in the cloud—there are clumpy, comet-shaped objects called cometary knots.  They aren’t really comets, but they look similar to comets with their tails blowing out in the solar wind. In this case, the knots are  strands of molecular hydrogen being shaped by the flow of high-energy radiation streaming out from the dying star. Even though they look small, each is about the size of our solar system.

This, in a nutshell (or a gas shell) is about how our Sun will look billions of years from now. Perhaps our descendants will watch it all unfold from a planet around neighboring star, and take similar pictures with their orbiting space telescopes.

Want to know more about this image. Check out the European Southern Observatory site for more details and an array of downloadable images.